Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion
نویسندگان
چکیده
onvolutive blind source separation (BSS) usually encounters two difficulties – the filter indeterminacy in the recovered sources and the relatively high computational load. In this paper we propose an efficient method to convolutive BSS, by dealing with these two issues. It consists of two stages, namely, multichannel blind deconvolution (MBD) and learning the postfilters with the minimum filter distortion (MFD) principle. We present a computationally efficient approach to MBD in the first stage: a vector autoregression (VAR) model is first fitted to the data, admitting a closed-form solution and giving temporally independent errors; traditional independent component analysis (ICA) is then applied to these errors to produce the MBD results. In the second stage, the least linear reconstruction error (LLRE) constraint of the separation system, which was previously used to regularize the solutions to nonlinear ICA, enforces a MFD principle of the estimated mixing system for convolutive BSS. One can then easily learn the post-filters to preserve the temporal structure of the sources. We show that with this principle, each recovered source is approximately the principal component of the contributions of this source to all observations. Experimental results on both synthetic data and real room recordings show the good performance of this method.onvolutive blind source separation (BSS) usually encounters two difficulties – the filter indeterminacy in the recovered sources and the relatively high computational load. In this paper we propose an efficient method to convolutive BSS, by dealing with these two issues. It consists of two stages, namely, multichannel blind deconvolution (MBD) and learning the post-filters with the minimum filter distortion (MFD) principle. We present a computationally efficient approach to MBD in the first stage: a vector autoregression (VAR) model is first fitted to the data, admitting a closed-form solution and giving temporally independent errors; traditional independent component analysis (ICA) is then applied to these errors to produce the MBD results. In the second stage, the least linear reconstruction error (LLRE) constraint of the separation system, which was previously used to regularize the solutions to nonlinear ICA, enforces a MFD principle of the estimated mixing system for convolutive BSS. One can then easily learn the post-filters to preserve the temporal structure of the sources. We show that with this principle, each recovered source is approximately the principal component of the contributions of this source to all observations. Experimental results on both synthetic data and real room recordings show the good performance of this method.C Keywords— Independent component analysis, Convolutive blind source separation, Least linear reconstruction error, Vector autoregression
منابع مشابه
Blind Signal Deconvolution by Spatio Temporal Decorrelation and Demixing
In this paper we present a simple efficient local unsupervised learning algorithm for on-line adaptive multichannel blind deconvolution and separation of i.i.d. sources. Under mild conditions, there exits a stable inverse system so that the source signals can be exactly recovered from their convolutive mixtures. Based on the existence of the inverse filter, we construct a two-stage neural netwo...
متن کاملRelation between Blind System Identification and Convolutive Blind Source Separation
1. INTRODUCTION. Traditionally blind source separation (BSS) has often been considered as an inverse problem. In this paper we show that the theoretically optimum convolutive BSS solution corresponds to blind multiple-input multiple-output (MIMO) system identification. By choosing an appropriate filter length we show that for broadband algorithms the well-known ambiguities can be avoided. Ambig...
متن کاملOn-line Convolutive Blind Source Separation of Non-Stationary Signals
A novel algorithm is proposed in this paper to solve blind source separation of post-nonlinear convolutive mixtures of non-stationary sources. Both convolutive mixing and post-nonlinear distortion are included in the proposed model. Based on the generalized Expectation-Maximization (EM) algorithm, the Maximum Likelihood (ML) approach is developed to estimate the parameters in the model. A set o...
متن کاملBlind separation and deconvolution for convolutive mixture of speech using SIMO-model-based ICA and multichannel inverse filtering
We propose a new two-stage blind separation and deconvolution (BSD) algorithm for a convolutive mixture of speech, in which a new Single-Input Multiple-Output (SIMO)-modelbased ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at th...
متن کاملBlind Separation and Deconvolution for Convolutive Mixture of Speech Combining SIMO-Model-Based ICA and Multichannel Inverse Filtering
We propose a new two-stage blind separation and deconvolution strategy for multiple-input multiple-output (MIMO)-FIR systems driven by colored sound sources, in which single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 73 شماره
صفحات -
تاریخ انتشار 2010